328712 (28)

BE ($7^{\text {th }}$ Semester)
Examination, Nov.-Dec., 2021
Branch : Et \& T

MICROWAVE COMMUNICATION \& ENGINEERING

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : (i) Part (a) in each question is compulsory.
(ii) Attempt any two parts from b, c \& d.
(iii) Assume suitable data wherever necessary.
(iv) Answer should be brief and to the point.
Q. 1. (a) Define skip distance.
(b) Derive an expression for field strength of tropospheric wave. 7
(c) What is an elevated duct? Explain ground based duct propagation. 7
(d) A T.V. transmitter antenna has a height of 144 meter and the receiving antenna has a height of 25 meters. What is the maximum distance through which the TV signal should be received by space wave propagation?

What is the radio horizon in this case? 7
Q. 2. (a) What is the effect on an electron that enters
the buncher gap, when the potential across the grids is at zero volts? 2
(b) Derive expression for four propagation constant which represent four different mode of wave propagation of the helical Travelling Wave Tube (TWT). 7
(c) Obtain expression for the relationship
between the repeller voltage $\left(V_{R}\right)$ and
number of cycle (n) required for oscillation
for a given beam voltage V_{0}. 7
(4)
(d) A four-cavity Klystron amplifier has the

$$
\text { following parameters : } \quad \mathbf{7}
$$

Beam Voltage ; $\mathrm{V}_{0}=20 \mathrm{KV}$.

Beam Current ; $I_{0}=2 \mathrm{~A}$

Operating frequency ; $f=9 \mathrm{GHz}$.
dc charge density ; $\rho_{0}=10^{-6} \mathrm{c} / \mathrm{m}^{3}$

RF charge density ; $\varphi=10^{-8} \mathrm{c} / \mathrm{m}^{3}$

Velocity perturbation ; $v=10^{5} \mathrm{~m} / \mathrm{s}$

Determine :
(i) The dc electron velocity.
(ii) The dc phase constant.
(5)
(iii) Plasma frequency.
(iv) Reduced plasma frequency for $\mathrm{R}=0.5$
(v) The beam current density.
(vi) The instantaneous beam current density.
Q. 3. (a) What is parametric amplifiers ?

2
(b) With suitable diagram, explain how GUNN
diode can be used as an oscillator and
amplifier.
7
(c) State the difference between IMPATT and

TRAPATT. 7
(d) Explain operation and characteristics of

Tunnel diode.
7
(6)
Q. 4. (a) Differentiate between an E plane tee and an H plane tee. 2
(b) Explain the action of isolator and circulator using ferrites. 7
(c) Explain two hole directional coupler and derive its S-matrix. 7
(d) Imagine that a source is connected to arm
' P ' and arm ' S ' is match terminated. Arm 1
and 2 are terminated in reflection
coefficients of 0.2 and 0.3 respectively.

What is VSWR seen by the source ? 7
Q. 5. (a) What is the drawback of filter design by image parameter method? 2
(b) Explain the process of filter design by the insertion loss method. 7
(c) Design a band pass filter having a 0.1 dB

Chebyshev response with $\mathrm{N}=3$. The centre frequency is 2 GHz , the bandwidth is 200 MHz and impedance is 50Ω.

The element values for low pass prototype circuit are given as : 7
(8)

$$
\begin{aligned}
& g_{1}=1.0315 \\
& g_{2}=1.1474 \\
& g_{3}=1.0315 \\
& g_{4}=1.000 \\
& \text { (d) Explain wave analysis of periodic } \\
& \text { structures. }
\end{aligned}
$$

